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Abstract. In the paper, the question is investigated if a bundle algorithm can be used to compute approximate
solutions for bilevel programming problems where the lower level optimal solution is in general not uniquely
determined. To give a positive answer to this question, an appropriate regularization approach is used in the lower
level. In the general case, the resulting algorithm computes an approximate solution. If the problem proves to have
strongly stable lower level solutions for all parameter values in a certain neighborhood of the stationary solutions
of the bilevel problem, convergence to stationary solutions can be shown.

Keywords: bilevel programming, parametric optimization, bundle algorithm, nondifferentiable optimization

1. Introduction

Bilevel programming problems are hierarchical optimization problems where a part of the
unknowns is restricted to be an optimal solution of a second problem parametrized in the
remaining variables. Formally, bilevel programming problems can be stated as follows:{

F(x, y)→ “ min
y

”

y ∈ Y, x ∈ 9(y), (1)

where9(·) is equal to the set of optimal solutions of a second problem{
f (x, y)→ min

x
g(x, y) ≤ 0.

(2)

Here, all functions used to formulate these problems are assumed to be sufficiently smooth:
F, f, gi ∈ C2(Rn × Rm,R), i = 1, . . . , p, andY ⊆ Rm is a fixed closed set,g(x, y) =
(g1(x, y), . . . , gp(x, y))T. Bilevel problems have a large number of potential applications
(see e.g. [22] and the references therein).

In the formula (1) we have used quotation marks to express the uncertainty of minimiza-
tion with respect toy only in the case when the lower level optimal solutionx ∈ 9(y) is
not uniquely determined. Then, the value ofF(x, y) cannot be predicted in general without
knowledge of the responsex ∈ 9(y) of the lower level problem.
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In most of the references investigating this setting, one of two ways out of this situation
are used: An optimistic approach [6, 11] and a pessimistic one [19, 21]. Both approaches
lead to the necessity of minimizing a nonsmooth (in general even discontinuous) auxiliary
function:

φo(y) := min
x
{ f (x, y) : x ∈ 9(y)}

in the optimistic and

φp(y) := max
x
{ f (x, y) : x ∈ 9(y)}

in the pessimistic cases. Moreover, it is difficult to decide if one of them is really adequate
to the considered situation.

In this paper neither of these approaches is discussed. Instead, a regularization approach
is used to circumvent the difficulties of non-uniquely determined lower level solutions:
Replace the problem (2) by{

f (x, y)+ α‖x‖2→ min
x

g(x, y) ≤ 0
(3)

for α > 0. Let9α(y) denote the set of optimal solutions for this problem. Some relations
between the regularized and the original bilevel problems have been investigated in [20].
Another regularization has been used in [6]. We will show that, for fixedα > 0, and under
presumably not too restrictive assumptions, the optimal solution of problem (3) is uniquely
determined by a locally Lipschitz continuous functionxα(y) with respect toα, y. Hence,
the regularized problem

min
y
{Gα(y) := F(xα(y), y) : y ∈ Y} (4)

is a Lipschitz optimization problem forα > 0 and can be solved by means of nondiffer-
entiable minimization techniques as e.g. the bundle-trust region algorithm [16, 29]. This
approach has been successfully applied to problem (1) in the case when the lower level
problem’s optimal solution is strongly stable [17] for ally and the linear independence
constraint qualification is satisfied there [7, 24, 25]. Here we will apply this method to
the case when neither assumption is valid. This will lead to a modified bundle algorithm
which, in general, is only an approximation algorithm to the bilevel problem. If the lower
level solutions are strongly stable for all parameter values in a small neighborhood of the
stationary solutions, this algorithm is also exact.

2. Properties of the lower level optimal solution

To avoid the difficulties which arise when disconnected sets9α(y) of global optimal so-
lutions arise in (3) we will assume that the lower level problem is a convex one satisfying
some compactness assumptions:
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(C) All functions f (·, y), gi (·, y), i = 1, . . . , p, are convex onRn and the set{x :
g(x, y) ≤ 0} is not empty and compact for each fixedy ∈ Y.

We will also use two constraint qualifications:
(MF) For eachy ∈ Y there exists̄x satisfyingg(x̄, y) < 0.

Let L(x, y, λ) = f (x, y) + ∑p
i=1 λi gi (x, y) denote the Lagrangean function of

problem (2). If (C) and (MF) are satisfied it is well-known that a pointx satisfying
g(x, y) ≤ 0 is an optimal solution of problem (2) if and only if the set of Lagrange
multiplier vectors

3(x, y) = {λ ≥ 0 : ∇x L(x, y, λ) = 0, λT g(x, y) = 0}

is not empty. In this case3(x, y) is a bounded polyhedron [9].
(CR) For eachα ≥ 0 and for each(x0, y0) satisfyingx0 ∈ 9α(y0) there exists an open
neighborhoodV of (x0, y0) such that: for allI ⊆ { j : gj (x0, y0) = 0} the family of
gradients{∇xgi (x, y) : i ∈ I } has constant rank onV .

This constant rank constraint qualification has been used e.g. in [12, 13].
Due to strong convexity of the objective function in the regularized lower level problem (3),

the optimal solution of this problem is uniquely determined for positive regularization pa-
rameterα > 0. This property is essentially used in the second assertion of Theorem 2.1
below. With respect to relations between the sets9α(y) and9(y) we have by straightfor-
ward application of the results in [1, Theorems 3.1.1, 3.1.5, and 4.2.2]

Theorem 2.1. Consider the parametric problems(2) and(3) and let the assumptions(C)
and(MF) be satisfied. Then

1. For each sequences{yk}∞k=1 ⊆ Y, {αk}∞k=1 ⊆ R+ converging toȳ, ᾱ, resp., and for each
sequence{xk}∞k=1 satisfying xk ∈ 9αk(yk) ∀k the sequence{xk}∞k=1 has accumulation
pointsx̄ and all these points satisfȳx ∈ 9ᾱ(ȳ).

2. For ᾱ = 0 we have

lim
yk→ȳ

αk↘0

xαk(yk) = x(ȳ)

provided that9(ȳ) = {x(ȳ)}.

It should be noted that in general we do not have

lim
yk→ȳ

αk↘0

xαk(yk) ∈ Argmin
x
{‖x‖ : x ∈ 9(ȳ)}

without the assumption that9(ȳ) reduces to a singleton, even if this limit exists. This can
be seen in
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Example 2.2. Consider the problem

min
x
{xy : x ∈ [−1, 1]}.

Then,

9(y) =


[−1, 1], if y = 0,

{1}, if y < 0,

{−1}, if y > 0,

and

9α(y) =


{−y/(2α)} if −y/(2α) ∈ [−1, 1],

{1}, if −y/(2α) ≥ 1,

{−1}, if −y/(2α) ≤ −1.

for y ∈ [−2α, 2α]. Hence, depending on the limit of the sequence−yk/αk, the sequence
xαk(yk) can have any limit point in [−1, 1] for yk → 0, αk → 0. 2

This drawback results from the inherent difficulties in the bilevel problem with nonunique
lower level solutions. When solving this problem we have either to minimize a discontin-
uous, only implicitly determined function (which is also not lower semicontinuous in the
case of the pessimistic approach) or we have to minimize a certain continuous relaxation of
it. Such a relaxation can be obtained by the way of regularizing the lower level problem, but
then we loose the knowledge of some properties of the limit pointx0(y0) of the sequence
of lower level solutions{xαk(yk)}k∈N computed in any iteration algorithm. We only know
that the limit point(x0(y0), y0) of the sequence{(xαk(yk), yk)}k∈N is feasible for the bilevel
problem, i.e.x0(y0) ∈ 9(y0). Hopefully, the point(x0(y0), y0) has a good function value
for the bilevel programming problem. It is even possible that this function value is better
than that obtained when minimizing the functions arising in either the optimistic or the
pessimistic approach. For theoretical investigations of how to get a solution(x0(y0), y0)

such thatx0(y0) is the least norm element in the solution set of the lower level problem, the
reader is referred to [20].

For a fixed valueα > 0, the optimal solution of problem (3) is uniquely determined and
the functionxα(·) of optimal solutions for these problems is continuous. In order to apply the
bundle algorithm to problem (4) we need even more: The objective function of this problem
should be locally Lipschitz continuous. To meet this property we have to add an additional
assumption as (CR) [5]. Then, the next theorem shows that the local behavior of the thus
well-defined functionx.(·) is even better: the functionx.(·) is locally aPC1-function, i.e. a
continuous selection of finitely many continuously differentiable functions:

Definition 2.3. A function h : Rq → Rr is called aPC1-function locally atw0 ∈ Rq if
there exist an open neighborhoodW of w0 and finitely many continuously differentiable
functionshi : W→ Rr , i = 1, . . . , t , such that
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1. h is continuous onW and
2. h(w) ∈ {h1(w), . . . , ht (w)} ∀w ∈ W.

Theorem 2.4. Let xα(y) be an optimal solution of the problem(3) for y ∈ Y, α ≥ 0.
Take y0 ∈ Y, α0 > 0 and assume that(C), (MF), and(CR) are satisfied. Then, the function
x.(·) is a PC1-function locally at(α0, y0).

This theorem is a direct consequence of [26] since the strong sufficient optimality condition
of second order is implied by (C) and strong convexity of the Euclidean norm. The proof
of this theorem in [26] has shown that in place of the selection functions used in the
representation ofx.(·) as a PC1-function we can use functionsxI

α(y) describing local
optimal solutions of the modified problems

min
x
{ f (x, y)+ α‖x‖2 : gi (x, y) = 0, i ∈ I }, (5)

whereI is a subset of{1, . . . , p} satisfying the following two conditions:

1. { j : λ j > 0} ⊆ I ⊆ { j : gj (xα0(y0), y0) = 0} for some Lagrange multiplier vector
λ ∈ 3α0(xα0(y0), y0) and

2. the gradients∇xgi (xα0(y0), y0), i ∈ I , are linearly independent.

Here,3α(x, y) = {λ ≥ 0 : ∇x L(x, y, λ) + 2αx = 0, λT g(x, y) = 0} is the set of
Lagrange multipliers for problem (3). LetI = I(xα0(y0), y0) denote the family of all sets
having these two properties. Under (C) and (MF), this family is not empty. To see this,
remember that, for each vertexλ ∈ 3α0(xα0(y0), y0), the setI = { j : λ j > 0} ∈ I.

PC1-functions are locally Lipschitz continuous [10] Directional differentiability of the
function x.(·) is guaranteed even without (CR) [3, 30]. These results can be applied for
solving the bilevel programming problem (1) by means of a descent algorithm [6]. For
the use of other algorithms of nondifferentiable optimization as e.g. the bundle algorithm
as desired in this paper we need a tool for computing at least one generalized gradient of
the locally Lipschitz continuous functionGα(·) := F(xα(·), ·) at each iteration pointy.
For this, the following theorem is very helpful which gives the principal possibility for the
computation of the subdifferential of the functionGα(·):

Theorem 2.5 [18, 27]. Let h : Rq → Rr be a PC1-function locally atw0. Then, its
generalized Jacobian in the sense of Clarke[2] is equal to

∂h(w0) = conv{∇hi (w
0) : w0 ∈ cl(int Ti )},

where

Ti = {w : h(w) = hi (w)}, i = 1, . . . , t.
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3. The generalized Jacobian of the lower level optimal solution

For our later investigations we need the generalized Jacobian of the functionx.(·) with
respect toy only. Due to Theorem 2.5, two questions are to be answered for its description:
On the first hand a method for the computation of the Jacobian for each selection function
is needed. On the second hand, a rule for verification ify0 ∈ cl(int Ti ) is searched for.

The selection functionsxI
α(·) are functions describing local optimal solutions of the

modified lower level problems (5) for fixedα > 0. By assumption (C) the objective function
of this problem has a positive definite Hessian matrix with respect tox for eachy ∈ Y,α > 0
and the linear independence constraint qualification is satisfied for this equality-constrained
problem by the second property of the setI ∈ I. By [8] this implies that the Jacobian of
the functionxI

α(·) can be computed by solving the following system of equations:

M0

(∇xI
α(y

0)

µ

)
= N0, (6)

where

M0 =
(∇2

xxL I
(
xI
α(y

0), y0, λ
)+ 2αE ∇T

x gI
(
xI
α(y

0), y0
)

∇xgI
(
xI
α(y

0), y0
)

0

)
,

N0 =
(−∇2

yxL I
(
xI
α(y

0), y0, λ
)

−∇ygI
(
xI
α(y

0), y0
) )

for the uniquely determined Lagrange multiplier vectorλ of problem (5) at the point
(xI
α(y

0), y0), whereE denotes the unit matrix of ordern and L I (x, y, λ) = f (x, y) +∑
i∈I λi gi (x, y).

Remark 3.1. Formula (6) for the computation of the Jacobian for the selection function
remains valid forα = 0 if the strong sufficient optimality condition of second order is
satisfied for the original problem:
(SSOC)[17] For eachλ ∈ 3(x0(y0), y0), for each directiond 6= 0 satisfying

∇xgi (x0(y
0), y0)d = 0 for all i with λi > 0

we have

dT∇2
xxL(x0(y

0), y0, λ)d > 0.

To answer the second posed question is not possible without an additional assumption:
(NE) For each vertexλ0 ∈ 3α(xα(y0), y0), the matrix(∇2

xxL(xα(y0), y0, λ0)+ 2αE ∇T
x gJ0(xα(y0), y0) ∇2

yxL(xα(y0), y0, λ0)

∇xgI 0(xα(y0), y0) 0 ∇ygI 0(xα(y0), y0)

)



A BUNDLE ALGORITHM 151

has full row rankn + |I (xα(y0), y0)|, where the abbreviationsJ0 = { j : λ0
j > 0} and

I 0 = I (xα(y0), y0) = { j : gj (xα(y0), y0) = 0} have been used.

Remark 3.2. This assumption is trivially satisfied forα > 0 e.g. if the Linear Indepen-
dence Constraint Qualification (LICQ) together with the Strict Complementarity Slackness
Condition (SCS) hold since thenJ0 = I 0 and the left part of the above matrix is regular
[17]. Condition (NE) simply means that the decrease of the rank of this matrix for violated
(LICQ) and/or (SCS) is compensated by the increase due to addition of the right part of this
matrix. This assumption is not assumed to be satisfied for all Lagrange multipliers but only
for the vertices of the setλ0 ∈ 3α(xα(y0), y0).

Theorem 3.3. Consider problem(3) with α > 0 at a point y0 ∈ Y . Let xα(y0) be the
optimal solution and assume(C), (MF), (CR), and(NE). Then

∂yxα(y
0) = conv

{∇yxI
α(y

0) : I ∈ I}.
The proof of this theorem uses the directional derivative of the functionxα(·)

x′α(y
0; r ) = lim

t↘0
t−1[xα(y

0+ tr )− xα(y
0)]

with respect toy only. This directional derivative is equal to the unique solution of the
following strictly convex quadratic optimization problem

0.5dT
(∇2

xxL(xα(y
0), y0, λ0)+ 2αE

)
d + r T∇2

yxL(xα(y
0), y0, λ0)d→ min

d

∇xgi (xα(y
0), y0)d +∇ygi (xα(y

0), y0)r = 0, i ∈ J0

∇xgi (xα(y
0), y0)d +∇ygi (xα(y

0), y0)r ≤ 0, i ∈ I 0 \ J0 (7)

for eachλ0 ∈ 3α(xα(y0), y0) solving the linear problem

max
λ
{∇yL(xα(y

0), y0, λ)r : λ ∈ 3α(xα(y
0), y0)} (8)

[26]. Moreover,λ0 ∈ 3α(xα(y0), y0) solves this linear problem for a fixed directionr if
and only if there exists a solutiond of the following system

∇xgi (xα(y
0), y0)d + ∇ygi (xα(y

0), y0)r = 0, i ∈ J0

∇xgi (xα(y
0), y0)d + ∇ygi (xα(y

0), y0)r ≤ 0, i ∈ I 0 \ J0,

i.e. if the quadratic problem has a feasible solution for the fixed values ofr andλ0 [3].

Proof of Theorem 3.3.: Take an arbitrary setI ∈ I and let without loss of generality

J0 = {1, . . . , s}, I = {1, . . . ,u}, I 0 = {1, . . . , v}
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for somes ≤ u ≤ v, whereJ0 corresponds to the vertexλ0 ∈ 3α(xα(y0), y0) chosen
according to the first condition in the definition ofI. Denote thei th unit vector ofRn by
ei . Then, by (NE) the matrixM1 defined by

∇2
xxL(xα(y0), y0, λ0)+ 2αE ∇T

x gI 0(xα(y0), y0) ∇2
yxL(xα(y0), y0, λ0)

∇xgI 0(xα(y0), y0) 0 ∇ygI 0(xα(y0), y0)

0 eT
s+1 0

...
...

...

0 eT
v 0


has full row rank: if thev − s columns(∇T

x gi (xα(y0), y0), ei ) with i ∈ I 0 \ J0 together
with the lastv − s rows are deleted, a matrix arises which by (NE) has full row rank. The
deleted rows and columns contain a unit matrix of orderv − s in the lastv − s rows.

Hence, the system of linear equations

M1(d, ν, r )T = a

has a solution for each right-hand-side vectora. Letε > 0 be arbitrary and takeai = 0, i =
1, . . . ,n+u,ai = −ε, i = n+u+1, . . . ,n+v,ai = ε, i = n+v+1, . . . ,n+v+u−s, and
ai = 0, i = n+v+u−s+1, . . . ,n+2v−sand let(d0, ν0, r 0) be a solution of the resulting
system. Then,(d0, ν0) solves the Karush-Kuhn-Tucker conditions of the quadratic problem
(7) for the fixed values ofλ0, r 0. Since the problem (7) is strictly convex ind for each fixed
r 0, λ0, it has a unique optimal solution whenever it has one and the Karush-Kuhn-Tucker
conditions are necessary and sufficient for optimality. Hence,d0 = x′α(y

0; r 0). Moreover,
using Taylor’s expansion up to the first order for the functiont 7→ gi (xα(y0+ tr 0), y0+ tr 0)

at t = 0 with respect tot ≥ 0 we get

gi (xα(y
0+ tr 0), y0+ tr 0) = gi (xα(y

0), y0)− tε + o(t) < 0

for i ∈ I 0 \ I = {u + 1, . . . , v} and sufficiently smallt > 0, where limt↘0 o(t)/t = 0.
Hence, the constraintsgi (xα(y), y) are inactive fori ∈ I 0\ I , y = y0+ tr 0, and sufficiently
small t > 0. Thus, they can be dropped.

By the second condition forI the linear independence constraint qualification is satis-
fied for the problem (5) which together with (C) and [8] implies that this problem has a
continuously differentiable (local) optimal solutionxI

α(·) with xI
α(y

0) = xα(y0) in a cer-
tain neighborhood of(xα(y0), y0). The corresponding Langrange multiplier vectorλI

α(·) is
also continuously differentiable aty0. By exploiting the system of equations resulting from
M1(d, ν, r ) = a after deleting all equations related to the index setI 0 \ I (i.e. the lines
n+ u+ 1, . . . ,n+ v andn+ v + u− s+ 1, . . . ,n+ 2v − s) it is easy to see, that

d0 = x′α(y
0; r 0) = ∇yxI

α(y
0)r 0, ν0 = ∇yλ

I
α(y

0)r 0.

By Taylor’s expansion up to the first order for the functiont 7→ λI
α,i (y

0 + tr 0) at t = 0
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we get

λI
α,i (y

0+ tr 0) = λI
α,i (y

0)+ tε + o(t) > 0

for i ∈ I \ J0 = {n + v + 1, . . . ,n + v + u − s} and sufficiently smallt > 0. Using
that the Karush-Kuhn-Tucker conditions are necessary and sufficient optimality conditions
for problem (3) under our assumptions, this implies thatxα(y0 + tr 0) = xI

α(y
0 + tr 0) for

sufficiently smallt > 0 and

{ j : gj (xα(y
0+ tr 0), y0+ tr 0) = 0} = I .

Thus,∇xα(y0+tr 0) = ∇xI
α(y

0+tr 0) for sufficiently smallt > 0. Hence, by Rademacher’s
Theorem [2],∇yxI

α(y
0) ∈ ∂yxα(y0).

By Theorem 2.4,

xα(y) ∈
{
xI
α(y) : I ∈ I}

for all y in a sufficiently small open neighborhood ofy0. Hence, by Theorem 2.5

∂yxα(y
0) ⊆ conv

{∇yxI
α(y

0) : I ∈ I}
and we are done. 2

Remark 3.4. If the computation of only one generalized Jacobian of the functionxα(y)
at y = y0 is needed, assumption (NE) can be weakened [4]. If the assumption (SSOC) is
satisfied aty0, then this theorem remains true also forα = 0.

Assumption (NE) is needed for proving the computability of generalized gradients of
the functionxα(·) not for the existence of generalized gradients. In [23] it is shown that
for each setI ∈ I a generalized gradient of the functionxα(·) can be computed provided
that the problem of computing the projection on a parameter independent set is considered
and (LICQ) is satisfied. For general parametric optimization problems satisfying (SSOC)
and (LICQ) this is not true. Hence, we have to add a certain condition. In [7] the strong
complementarity assumption with respect to (7) has been added (it is possible to replace
(LICQ) by (MFCQ) [4]). In [24] the difficulties of the computation of generalized gradients
of thexα(·) are overcome by using the assumptions of [23], and in [25] the condition (LICQ)
is used together with a condition which is dual to (NE).

The following example shows that Theorem 3.3 is in general not valid if assumption (NE)
is dropped. This example is concerned with problem (2) (i.e. withα = 0) but examples
showing the same effect for problem (3) can easily be found.

Example 3.5. Consider the simple problem

min
x
{(x1− y)2+ (x2− 1)2 : x1+ x2 ≤ 1, −x1+ x2 ≤ 1}
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at the pointy0 = 0. Then,x(y0) = (0, 1)T is the unique optimal solution and the assump-
tions (C), (MF), (SSOC), and (CR) are satisfied there. (NE) is not satisfied. It is easy to see
that

x(y) ∈ {(y/2, 1− y/2)T, (y/2, 1+ y/2)T}

for y neary0, and3(x(y0), y0) = {(0, 0)T}. The setsI ∈ {∅, {1}, {2}, {1, 2}} are to be
considered in order to compute the generalized Jacobian of the functionx(·).

For I = {1} we compute∇xI (y0) = (0.5,−0.5)T . For I = {2} we get∇xI (0) =
(0.5, 0.5)T .Hence,∇xI (0) ∈ ∂yx(0) for both setsI = {1} andI = {2}. But, for I = {1, 2}
we computexI (0) = (0, 0)T 6∈ ∂yx(0). Last but not least we see that∇xI (0) = (1, 0)T 6∈
∂yx(0) for I = ∅. 2

Remark 3.6. If the assumptions (C), (MF), and (CR) are satisfied andα > 0 is fixed, the
function xα(·) is weakly semismooth in the sense thatx′α(y

0; r ) = limt↘0w(t)r , where
w(t) ∈ ∂yxα(y0+ tr ) for t > 0 [4]. This property remains true forα = 0 if the assumption
(SSOC) is also satisfied.

4. A bundle algorithm

Now, we are prepared to describe the application of the bundle idea to the bilevel problem (4).
The idea is to combine iterations of a bundle algorithm with decreasing values forα. The
simplest way to do that is to use the following

Prototype bundle algorithm:
Step 1:Selectε0 > 0, α0 > 0 and a starting pointz0. Sets := 0.
Step 2:Starting withzs, compute by use of a bundle algorithm anεs-optimal solutionzs+1

of the problem (4) for that fixed value ofα = αs.
Step 3:Setεs+1 := εs/2, αs+1 := αs/2,s := s+1 and repeat Step 2 until some termination
criterion is satisfied.

At least if the value ofαs is not too small, Step 2 can be done in a finite number of
iterations. This is also guaranteed for each iteration if the sequence{zs}s∈N converges to
some point̄z where the unique lower level optimal solutionx0(z̄) is strongly stable. In this
case, by upper semicontinuity of theε-subdifferential of a locally Lipschitzian function, we
easily derive that the limit point(x0(z̄), z̄) of the iteration process is a stationary solution
of the bilevel problem.

In what follows we will do two things. First a certain diagonalization process is initiated
which means that we will not compute anεs-optimal solution of the regularized problem (4)
before updatingαs but decreaseαs whenever a (short) serious step has been made. Hopefully
this results in a smaller number of the (expensive) evaluations of the objective function value
Gαs(zs). And, additionally, we intend to avoid difficulties in the calculation process which
could arise if the value ofαs is decreased too rapidly at points which are far from the
region where the problem behaves sufficiently well to guarantee that all calculations in the
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algorithm can really be made, i.e. at points, where the Lipschitz constant of the functionx.(·)
is too large. Second, a special (but possible one within the settings of the bundle algorithm
in [16]) rule for updating the trust region radius is used in order to catch the sequence of
trial and iteration points generated by the algorithm in some neighborhood of the stationary
points of the bilevel problem.

The above prototype algorithm consists of a sequence of applications of a bundle algo-
rithm to different problems, with other words, the bundle algorithm is restarted infinitely
often. When using the algorithm below, restarts will also be used if the result of one appli-
cation of the modified algorithm is not satisfactory, yet (i.e. if for instance the value ofαs

is too large). In the worst theoretical case, this can result in an infinite sequence of restarts
of the algorithm.

We do not intend to describe the bundle algorithm in details, this has been done e.g. in [16,
28, 29] but rather to give only the necessary material for understanding our modification. For
the sake of simplicity the algorithm is given forY = Rm. The case whenY is a polyhedron
can be treated in an analogous way [29]. For ideas of how to include nonlinear constraints,
see [14].

Let α > 0 be fixed for the moment. Subsequently we intend to decrease the value ofα

in order to get step by step a better approximation of the original problem. Set

Gα(y) = F(xα(y), y)

and letv(y) denote an arbitrary generalized gradient of this function:

v(y) ∈ {∇x F(xα(y), y)d +∇yF(xα(y), y) : d ∈ ∂yxα(y)}

(cf. the chain rule for the subdifferential [2]).
In bundle algorithms, a model of the function to be minimized is used to compute a

direction of descent. Let two sequences of points, the trial points{yk}sk=1, and the iteration
points{zk}sk=1 have already been computed. Then, for minimizing the nonconvex function
Gα(y), this model has the form

max
k∈Js

{v(yk)Td − βk,s} + Gα(z
s)+ usdTd/2, (9)

whereJs ⊆ {1, . . . , s}, us > 0 is a weight factor and

βk,s = |Gα(z
s)− v(yk)T(zs − yk)− Gα(y

k)|.

In what follows we will adopt Algorithm 2.1 in [16]. It consists of a sequence of iterations,
where directions of descent, step-sizes as well as new trial points are computed, and param-
eters are updated. We will not give the algorithm in details but only outline it in short. The
interested reader is referred to the original paper [16]. Denote byε > 0 a final optimality
tolerance, by%s > 0 a trust region radius, and bymL a positive line search parameter. Let
us ≥ umin > 0 be some weight andαs > 0 be some regularization coefficients. Letds be
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an optimal solution of minimizing the function (9). Then, as in [16] the value

εs := max

{
mp

(
‖ usds ‖ +

∑
j∈Js

ηs
jβ( j, s)

)
,

max
j∈Js

ηs
j 6=0

{
‖ y j − zj ‖ +

s−1∑
k= j

‖ zk+1− zk ‖
}}
,

whereηs
j are the Lagrange multipliers of the minimization problem (9) andJs ⊃ { j : ηs

j 6=
0} contains the present index set of used iteration points, is used for measuring the quality of
the present approximationzs of a solution for the problem (4). Hence, during the procedure,
εs should tend to zero. For practical reasons yet, the iteration process is terminated ifεs ≤ ε
for some positiveε. Let κ ≥ 1 be some positive constant used for bounding the change of
the trust region radius andδ1 be some initial stationarity target. Letω ∈ (0, 1).

In the following algorithm all not explicitly described changes of the parameter values
are as in the original Algorithm 2.1 in [16]. Summing up we have made only two small
changes in the original algorithm: First, we update the value ofα every time a (short) serious
step has been made, and second we bound the trust region radius using one of the possible
rules in the Algorithm 2.1 in [16]. The principal steps of the algorithm are as follows:

Bundle algorithm:
Step 1:Compute, if necessary by increasing the value ofus, an optimal solutionds of

minimizing the model function:

max
k∈Js

{v(yk)Td − βk,s} + usdTd/2 (10)

together with some corresponding Lagrange multipliersηs
j , j ∈ Js, such that‖ ds ‖ ≤ %s.

Test the stopping criterionεs ≤ ε and diminishεs as well asJs if necessary. Ifεs ≤ δs

thenδs := ωδs.
Step 2:Test, if a serious step can be made: If

Gαs(zs + ds) ≤ Gαs(zs)+mL max
k∈Js

{v(yk)Tds − βk,s}

then setzs+1 = zs + ds, ts = 1. Else make a line search (by Algorithm 2.2 in [16]) to
find either somets > 0 such that a short serious step is possible which leads to the new
solutionzs+1 = zs + tsds satisfying

Gαs(zs + tsd
s) ≤ Gαs(zs)+mLts max

k∈Js

{v(yk)Tds − βk,s}

or make a null step which means that a new trial pointys+1 = zs + tds is computed
for somet > 0 andts = 0. Now, if ts > 0, compute a new regularization coefficient
αs+1 ∈ (0, αs] such that

Gαs+1(zs+1)− Gαs(zs) ≤ 0.5(Gαs(zs+1)− Gαs(zs))

elseαs+1 = αs. Setys+1 = zs+1 if ts > 0.
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Step 3:Select a new trust region radius%s ≤ κ · δs maintaining the rules in [16], update all
other parameters andus of the algorithm as well as the setJs, compute a new generalized
gradient of the functionGαs+1(y) at the pointy = ys+1, setδs+1 := δs, s := s+ 1 and
repeat Step 1. 2

Some words with respect to the updating of the regularization parameter seem to be
necessary. Our principal aim is to minimizeαs to get a closer approximation of the original
problem. A decrease in its value is possible if we have a positive step length in Step 2. Then,

Gαs(zs + tsd
s) ≤ Gαs(zs)+mLts max

k∈Js

{v(yk)Tds − βk,s}.

Hence, sinceG.(·) is locally Lipschitz continuous there is some interval [α0, αs] ⊆ [0, αs]
with α0 < αs such that the inequality

Gα(z
s + tsd

s) ≤ Gαs(zs)+mLts max
k∈Js

{v(yk)Tds − βk,s}/2< Gαs(zs)

is satisfied for eachα ∈ [α0, αs]. To find αs+1, in the worst case, we can use dichotomy.
It is also possible to letαs be fixed during a (small) number of iterations if the algori-
thm seems to run into difficulties due to a too large Lipschitz constant of the objective
function.

For the theoretical investigations take the optimality toleranceε = 0. Then, in the above
bundle algorithm, a sequence{(αs, xαs(zs))}s∈N is computed (which in general is infinite,
but can also be finite due to finite termination or due to numerical reasons). If the sequence
{αs}s∈N converges to zero, the problem is successfully solved as will be seen below. In the
other case, the sequence{αs}s∈N will converge to somēαm > 0 and the sequence{zs}s∈N

converges tōzm with 0 ∈ ∂Gᾱm(ȳm). Then (or if the last regularization parameterαs is too
large in practice) we use a restart of the bundle algorithm to produce a new sequence of
points which reflects the original problem in a better way.

When the bundle algorithm is restarted we can use the limit pointȳm (or the last point
zs of the computed sequence if finite termination occurs) together with a new smaller
α1 ∈ (0, ᾱm) (resp.α1 ∈ (0, αs)) as starting point.

The above bundle algorithm uses a modification in the control of the trust region radius
by demanding that%s ≤ κ · δs with κ ≥ 1 which is not used in [16]. This rule is compatible
with all rules in [16] and applies only to parts (ii) to (iv) of Step 10 of the Algorithm 2.1
in [16] and is larger than the lower bounds for the update of% used there. It implies that
this radius will be minimized during the bundle algorithm (since convergence ofδs to zero
is shown in [16] provided that the sequence{zs}∞s=1 remains bounded). This rule has been
added to guarantee that all iteration and trial points generated during the computations
remain in some set of interest.

No modification of the update of other parameters of the algorithm is made.

5. Convergence of the modified bundle algorithm

Throughout this section let the assumptions (C), (MF), (CR), and (NE) be satisfied for the
lower level problem and letY = Rm. Also assume that the sequence{zs}∞s=1 computed
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by the bundle algorithm remains bounded. If the toleranceε = 0 is chosen, then finite
termination means that

0 ∈ {∇x F(xαs(zs), zs)d +∇yF(xαs(zs), zs) : d ∈ ∂yxαs(zs)}

[16]. In this case, a restart of the algorithm is done with a new, smaller value ofα < αs.
Hence, let the bundle algorithm compute an infinite sequence. Letvs denote

vs = max
k∈Js

{v(yk)Tds − βk,s}.

Note that due toβk,s ≥ 0 andus > 0, vs ≤ vs + us(ds)Tds/2 ≤ −βk,s ≤ 0 where the
second inequality follows sinced = 0 is feasible for the problem of minimizing the function
(10). Then, as in [15], we get

Lemma 5.1. If the function F(x, y) is bounded from below on the set{(x, y) : y ∈
Rm, g(x, y) ≤ 0}, then

∑∞
s=1 ts| vs | <∞.

Proof: First note thatts > 0 iff a (short) serious step is made. Then, settingGα(z) =
F(xα(z), z),

− ∞ <

∞∑
i=1

(Gαs+1(zs+1)− Gαs(zs))

≤ 0.5
∞∑

i=1

(Gαs(zs+1)− Gαs(zs)) ≤ 0.5mL

∞∑
i=1

tsv
s < 0. 2

Recall that the functionG.(·) is locally Lipschitz continuous on [α0,∞) × Rm for each
fixedα0 > 0. Consequently, the update ofα in Step 2 of the bundle algorithm is possible.

Theorem 5.2. Let{(xαs(zs), zs, αs)}∞s=1 be the sequence computed by the modified bundle
algorithm withε = 0. Let the sequence{αs}∞s=1 be bounded from below by someα0 > 0.
Then, every accumulation point(xᾱ(ȳ), ȳ, ᾱ) of this sequence satisfies

0 ∈ {∇x F(xᾱ(ȳ), ȳ)d +∇yF(xᾱ(ȳ), ȳ) : d ∈ ∂yxᾱ(ȳ)}.

Proof: With respect to the Algorithm 2.1 in [16] we have changed only the evaluation of
the objective function values in Steps 7 and 8 while maintaining the condition

Gαs+1(zs+1) ≤ Gαs(zs)+ 0.5mLts max
k∈Js

{v(yk)Tds − βk,s}

and the update of%s in Step 10 by introducing an additional upper bound, which can be
satisfied in any of the cases in Algorithm 2.1 in [16].
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First we have to show an analogous result to Lemma 3.1 in [16]: Letȳ be some accu-
mulation point of the sequence{zs}s∈N computed by the algorithm. Similarly to formula
(2.12) in [16] we obtain that the optimal solutionds of the minimization of the function
(10) satisfies

ds ∈ ∂
(

Gαs

(
zs;max

j∈Js

ηs
j 6=0

{
‖ y j − zj ‖ +

s−1∑
k= j

‖ zk+1− zk ‖
}))

,

where∂Gα(z; ε) denotes the Goldsteinε-subdifferential

∂Gα(z; ε) = conv{∂Gα(y) : ‖z− y‖ ≤ ε}

which is upper semicontinuous and locally bounded [14]. Thus, if(ᾱ, ȳ, 0, 0) is an accu-
mulation point of the sequence{(

αs, zs, ds, max
j∈Js

ηs
j 6=0

{
‖ y j − zj ‖ +

s−1∑
k= j

‖ zk+1− zk ‖
})}∞

s=1

,

then 0∈ ∂Gᾱ(ȳ).
Second, since the value ofαs is changed only if a (short) serious step is made and since

our modification coincides with the original algorithm in treating null steps, after a finite
number of null steps a (short) serious step is made (cf. Lemmas 3.5 and 3.6 in [16]). Note,
that our changed rule for updating the value of%s leads only to bounding the increase of
this value but never the decrease. Hence, if the decrease of%s is need to be bounded this
remains true also in the modified algorithm.

Since in the proof of Lemma 3.7 in [16] the function valueGαs(zs) is only used to show
that ts|vs| converges to zero, (which results also from Theorem 5.1) this lemma remains
valid. The same is true for Lemma 3.8 of [16] which uses only the updating rules in the
algorithm.

Hence, also Theorem 3.9 of [16] remains valid which gives the desired result. 2

If the sequence{αs}∞s=1 converges to zero then the strong sufficient optimality condition
of second order at the accumulation points of the sequence{(xαs(zs), zs)}∞s=1 is necessary
in order to guarantee that the bundle algorithm is able to compute all the data necessary. If
this optimality condition is satisfied then the above theorem shows that the accumulation
points are stationary. Note that the sequence{zs}∞s=1 converges due to the modified rule for
the control of the trust region parameter provided that it remains bounded. Hence, we get
the

Corollary 5.3. Let the sequence{(xαs(zs), zs, αs)}∞s=1 be computed by the bundle algori-
thm, where{αs}∞s=1 converges to zero. Let̄y be the limit point of the sequence{zs}∞s=1 and
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let x0(ȳ) ∈ 9(ȳ). If the additional assumption(SSOC) is satisfied at(x0(ȳ), ȳ) then

0 ∈ {∇x F(x0(ȳ), ȳ)d +∇yF(x0(ȳ), ȳ) : d ∈ ∂yx0(ȳ)}.

In this corollary, the restrictive assumption (SSOC) has been used. Together with the
blanket assumptions (MF) and (CR) this assumption guarantees that the solution function
x(·) of the original lower level problem (2) is locally Lipschitz continuous atȳ. This implies
also thatαs can tend to zero since we could minimize the functionG0(·) itself by use of the
bundle algorithm. In the other case, if the functionG0(·) is not locally Lipschitz continuous,
numerical difficulties make the decrease ofαs to zero impossible. In the following we intend
to investigate the possibilities to getαs→ 0 during the bundle algorithm.

To reach this aim we need one more assumption. Recall thatx0(y) ∈ 9(y) is an arbitrary
optimal solution of the problem (2). Consider the set

Ŷ = {y ∈ Rm : (SSOC) is satisfied at(x0(y), y)}.

In general, the set̂Y is neither open nor closed nor connected, butx0(·) is locally Lipschitz
continuous onŶ. The following considerations are only useful if the setŶ has a suitable
structure which is the main assumption in what follows. Letθ > 0 be a (small) constant
and consider a setD such thatD + 2θB := {y : infw∈D ‖y − w‖ < 2θ} ⊆ Ŷ. Here,B
denotes the unit ball inRm. Subsequently, we assume thatD 6= ∅ exists. This is a weaker
assumption than supposing (SSOC) throughoutRm.

Note, that if the assumption (SSOC) is not satisfied at the limit point(x0(y0), y0) of the
iteration sequence, then the functionx0(·) is generally not locally Lipschitz continuous at
the pointy0. This in turn means that we intend to minimize a non-Lipschitzian function by
a bundle algorithm. This probably will cause difficulties in the procedure which will result
in a termination without computing a solution. Then, the best solution found so far will be
an (presumably good) approximation of an optimal solution.

Lemma 5.4. Let B ⊆ Rm be a bounded set and0 < α̂ < α̃ positive numbers. Let
(zs, αs) ∈ ((D + θB)∩ B)× [0, α̃] ∪ B× [α̂, A), where A is a sufficiently large constant.
Assume that‖ds‖ ≤ θ/11 wheneverαs≤ α̃. Let us ≥ umin for all s. Then there exists C
(depending only on B, α̂, α̃) such that

1. ‖ds‖ ≤ C/
√

us,
2. ‖v(zs + tds)‖ ≤ C,
3. |Gαs(zs + tds)− Gαs(zs)| ≤ Ct‖ds‖,
4. |Gαs(zs)− Gαs(zs + tds)− t〈v(zs + tds), ds〉| ≤ Ct‖ds‖
for 0≤ t ≤ 10.

Note, that in the proofs of Lemmas 3.5–3.8 in [16] convergence ofGαs(zs)− Gαs(zs +
tds)− t〈v(zs+ tds), ds〉 to zero is used to investigate the null steps and to give the contra-
diction in Lemma 3.7(ii). Also, boundedness of‖v(zs+ tds)‖ is needed only for unchanged
αs. The bound for the norm ond is taken such that, for smallα, the new pointzs + tds

belongs toD + θB.
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Proof of Lemma 5.4.: The first assertion is proved as the first one of Lemma 3.3 in [15].
The second one follows since(zs+1, αs) ∈ ((D+θB)∩B+10/11θB)× [0, α̃]∪B× [α̂, A)
and the functionG.(·) is locally Lipschitz continuous there.C is the common Lipschitz
constant ofG on the set((D+θB)∩B+10/11θB)×[0, α̃]∪B×[α̂, A). The third assertion is
due to Lipschitz continuity. For proving the last one first use the triangle inequality followed
by application of the second assertion of this lemma. 2

Note that the results in [16] prove that{δs}∞s=1 converges to zero. By the rules of the
modified bundle algorithm this implies that the sequence{zs}∞s=1 is a bounded Cauchy
sequence and, hence, itself convergent.

As already mentioned above, the control of the regularization parameterαs is not clearly
given. Due to the unknown behavior (besides Lipschitz continuity) of the functionG.(y)
for fixed y it seems to be impossible to give a valid rule. It is especially possible that
Gα(zs+1) > Gαs(zs) for 0 < α ¿ αs, wherezs, zs+1 have been computed as given in the
bundle algorithm. This means that a sequence{αs}∞s=1 computed by the rules of the bundle
algorithm can converge to a positive limitα̂. In that case, a restart of the bundle algorithm
is done with a smaller value for 0< α1 < α̂ (e.g.α1 ≤ max{0, α̂ − ξ} for some constant
ξ > 0). This results in a (finite or infinite) sequence of calls of the above bundle algorithm.

Clearly, in practice, the bundle algorithm itself uses only a finite number of iterates to
compute an approximate solution and only a finite number of restarts can be used. For
theoretical investigations let the bundle algorithm compute after each restart an infinite
sequence of iterates or stop due to satisfaction of a stationarity condition after a finite
number of iterations.

In the following theorem the resulting algorithm is investigated and we consider two
cases: First the case when the bundle algorithm is restarted finitely many times. Then, the
overall algorithm can be considered as being equal to one run of the bundle algorithm
(namely the last one). Second the case when the bundle algorithm is restarted infinitely
often. Again, for the investigation of the convergence of the algorithm, we useε = 0
in the stopping criterion. Then, due to the assumed boundedness of the sequence{zs}∞s=1
and convergence of{%s}∞s=1 to zero, the sequence{zs}∞s=1 computed during them-th run
of the above bundle algorithm converges to someȳm. Hence, also{(xαs(zs), zs, αs)}∞s=1
converges to(xᾱ(ȳm), ȳm, ᾱm). The sequence of all iteration points computed during the
infinite number of applications of the modified bundle algorithm is then being considered
in the second case. One accumulation point of this sequence is also an accumulation point
of the sequence{(xᾱ(ȳm), ȳm, ᾱm)}m∈N .

Now we are able to state the main convergence theorem for the modified bundle algorithm:

Theorem 5.5. Consider the regularized bilevel problem(4) and let the assumptions(C),
(MF), (CR) and (NE) be satisfied for all y∈ Rm, α > 0. Let there existα∗ > 0, ε̂ > 0,
and F̄ such that for all0 < α < α∗ all stationary pointsỹα of the functions F(xα(y), y)
have F(xα(ỹα), ỹα) ≤ F̄ and

{y : F(xα(y), y) ≤ F̄ + ε̂} ⊆ D ∀ 0< α < α∗,

where the set D is defined as above stated and bounded. Then we have the following:
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1. if only a finite number of restarts is needed to get convergence of{αs}∞s=1 to zero, then
the limit point(x0(ȳ), ȳ) of the sequence computed by the algorithm satisfies

0 ∈ {∇x F(x0(ȳ), ȳ)d +∇yF(x0(ȳ), ȳ) : d ∈ ∂yx0(ȳ)}.

2. if an infinite number of restarts is necessary then there exist accumulation points
(xᾱ(ȳ), ȳ, ᾱ) of the sequence computed by the algorithm withᾱ = 0 satisfying

0 ∈ {∇x F(xᾱ(ȳ), ȳ)d +∇yF(xᾱ(ȳ), ȳ) : d ∈ ∂yxᾱ(ȳ)}.

Moreover, the sequence computed by the algorithm has at least one accumulation point
(xᾱ(ȳ), ȳ, ᾱ) with ᾱ = 0.

Proof: By use of certain restarts and after dropping the first iterations if necessary we can
assume thatα1 ≤ α∗. By use of slow changes ofαs (or even by use of constant values of
αs in the first iterations) we can assume thatαs ≤ α∗ andF(xαs(zs), zs) ≤ F̄ + ε̂ for some
iteration indexs, since the sequence{zs}∞s=1 converges to some stationary point [16] and all
stationary pointsyαs satisfyF(xαs(yαs), yαs) ≤ F̄ . But then, by the rules of the algorithm,
both inequalities are satisfied in all later iterations, too. Hence we can assume without loss
of generality thatzs ∈ D for all s.

First assume that we are not forced to use restarts to guarantee that lims→∞ αs = 0.Then,
this implies that the sequence{zs}∞s=1 converges to somēy ∈ cl D. Indeed, by the rules
of the modified bundle algorithm,‖ zs+1 − zs ‖ ≤ c‖ ds ‖ ≤ c · κ · δs andδs converges
to zero by the proof of Theorem 3.9 in [16]. Since (SSOC) is satisfied atȳ ∈ cl D by the
assumptions of the theorem, the Theorem 3.9 in [16] can be used to show that

0 ∈ {∇x F(x0(ȳ), ȳ)d +∇yF(x0(ȳ), ȳ) : d ∈ ∂yx0(ȳ)}.

If a finite numberm̄ of restarts is used then the assertion of the theorem follows since
convergence of{αs}∞s=1 to zero means that only a finite number of iteration points of the
first m̄− 1 applications of the bundle algorithm can join each convergent subsequence of
the iteration points{(xαs(zs), zs, αs)}∞s=1 with lims→∞ αs = 0. Hence, we can drop the first
m̄−1 applications of the bundle algorithm and consider the sequence{(xαs(zs), zs, αs)}∞s=1
as being computed in the last one only. Then, the assertion follows as above.

Now, if an infinite number of restarts is necessary we can select the sequence{(xᾱm(ȳm),

ȳm)}∞m=1 of limit points in the applications of the bundle algorithm (i.e. themth appli-
cation produces a sequence{(xαs(zs), zs, αs)}∞s=1 converging to(xᾱm(ȳm), ȳm, ᾱm), m =
1, 2, . . .). Then, by [16]

0 ∈ {∇x F(xᾱm(ȳm), ȳm)d +∇yF(xᾱm(ȳm), ȳm) : d ∈ ∂yxᾱm(ȳm)}.

The assertion now follows by upper semicontinuity of the point-to-set mapping∂yx.(·) and
convergence of a subsequence of{(xᾱm(ȳm), ȳm, ᾱm)}∞m=1.

The proof is completed after showing that the algorithm can indeed compute some se-
quence{(xαs(zs), zs, αs)}∞s=1 such that lims→∞ αs = 0 using a certain number of restarts.
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This means that first, during one application of the bundle algorithm we are able to com-
pute all information necessary for the bundle algorithm to proceed and, second that, if a
restart is made, the value ofα can be sufficiently decreased to guarantee convergence of
the sequence{αs}∞s=1 to zero. The first assertion follows since all iterates remain in the set
{y : F(xα(y), y) ≤ F̄ + ε̂} ⊆ Ŷ where the functionx.(·) is locally Lipschitz continuous.
The second one follows from local Lipschitz continuity ofG.(ȳ) sinceGᾱm(ȳm) ≤ F̄ and
a new valueα1 is searched for satisfying

Gα1(ȳm) ≤ F̄ + ε̂.

Hence, ifK denotes a Lipschitz constant ofG.(·) with respect to variations ofα on the
compact set [0, α∗] × cl D, then

α1 ≤ max

{
0, ᾱm − ε̂

2K

}
can be used. 2

Since the value of̄F is not known a priori in general, the application of the above ideas
needs some appropriate control of the changes ofαs. Here, some alternate strategies should
be used: first take some iterations in which the values ofαs are changed only very slowly in
order to come near to a stationary point for some positiveα; then use a more rapid change
of αs in order to reachαs ≤ α∗; and so on. We are not able to give more concrete rules
about this control since this is only possible after a larger number of numerical experiments
which we have not done yet. Also, the numerical behavior of the algorithm in the case when
the assumptions of the last theorem are not satisfied is to be investigated in the future.

Example 5.6. The main ideas for the control ofα should be illustrated by means of the
following very simple example: Let

9(y) = Argmin
x
{xy : −y ≤ x ≤ y+ 1}

and thus

9α(y) = Argmin
x
{xy+ αx2 : −y ≤ x ≤ y+ 1}, α > 0.

Consider the bilevel problem

min{(x − y+ d)2 : x ∈ 9(y), −0.5≤ y ≤ 10}, d > 0 fixed.

Then,

9(y) =


[0, 1], y = 0,

{y+ 1}, −0.5≤ y < 0,

{−y}, 0< y ≤ 10,
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and, fory ∈ [−0.5, 0],

9α(y) =


{−y}, α ≥ 0.5,

{− y
2α }, − y

2y+2 ≤ α ≤ 0.5,

{y+ 1}, 0< α ≤ − y
2y+2,

and fory ∈ [0, 10],

9α(y) =
{
{−y}, α ≤ 0.5,

{− y
2α }, α ≥ 0.5.

If we start with 0< α < 0.5 sufficiently large (e.g.α ≥ − y
2y+2) and y < 0, then the

optimal solution isy = 0.5d which, occasionally, coincides with the optimal solution of
the original problem. The idea to solve the problem is now to use a relatively largeα

to reach a neighborhood of an optimal solution (which lies outside the region where the
algorithm has a difficult behavior due to an increasing Lipschitz constant of the solution
function of the lower level problem, if the assumptions of Theorem 5.5 are satisfied). This
is a Lipschitz optimization problem. Here we need to compute a point(xα(y), y) with
y > 0 for large (fixed)α, say the algorithm stops with(xα(y), y) = (−0.25d, 0.25d)
due to a “non-sufficient” decrease in the next step. Then, after reaching this neighborhood,
convergence to an optimal solution is started with decreasingα and the algorithm computes
a sequence{(xαs(ys), ys, αs)} converging to(−0.5d, 0.5d, 0). 2

6. Conclusions

In the paper we have investigated the question if it is possible to use a standard nondifferen-
tiable optimization algorithm for computing approximate solutions for bilevel programming
problems with generally non-unique lower level solutions. We have shown that this is in-
deed possible if the lower level problem is appropriately regularized. By use of an additional
assumption which means that at all points of interest in the bilevel problem the lower level
solution is also strongly stable [17], convergence of the algorithm to a stationary solution
of the bilevel problem has been shown. It is one task for future investigations to make
numerical experiments with this algorithm. The results of the experiments in [24, 25] for
problems satisfying stronger assumptions (all lower level solutions are strongly stable and
the linear independence constraint qualification is satisfied) are very encouraging for this
aim.
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